Probability problem on Dice
Examples 1:
Find Probability of getting a total more than 7,when sequentially throw of a pair of dice .
Answer :
Here n(S) is Total number of Possible outcomes So,
that is n(S) = ( 6 x 6 ) = 36.
Here E = Event of getting a total more than 7.
= {( 2, 6 )( 3, 5 )( 3, 6 )( 4, 4 )( 4, 5 )( 4, 6 )( 5, 3 )( 5, 4 )( 5, 5 )( 5, 6 )( 6, 2 )( 6, 3 )( 6, 4 )( 6, 5 )( 6, 6 )}
P(E)Probability of Event.
n(E) Total number of required outcomes.
n(S) is Total number of Possible outcomes So,
P(E) = n(E) / n(S) = 15 / 36 = 5 / 12.
Example 2:
A dice is thrown . What is the probability that the number shown on the dice is an divisible by 2 number ?
Answer :
S = { 1 , 2 , 3 , 4 , 5 , 6 },
n(S) = 6 .
E an number is divisible by 2 = { 2 , 4 , 6 } , n ( E ) = 3 .
So , P ( E ) = n ( E ) / n( S) = 3 / 6 = 1 / 2 .
Example 3:
A dice is thrown . What is the probability that the number shown on the dice is an odd number ?
Answer :
S = { 1 , 2 , 3 , 4 , 5 , 6 },
n(S) = 6 .
E an odd number is = { 1 , 3 , 5 } , n ( E ) = 3 .
So , P ( E ) = n ( E ) / n( S) = 3 / 6 = 1 / 2 .
Example 4 :
A dice is thrown . What is the probability that the number shown on the dice is an divisible by 3 number ?
Answer :
S = { 1 , 2 , 3 , 4 , 5 , 6 },
n(S) = 6 .
E an number is divisible by 3 = { 3 , 6} , n ( E ) = 2 .
So , P ( E ) = n ( E ) / n( S) = 2 / 6 = 1 / 3.
Example 5:
A dice is thrown . What is the probability that the number shown on the dice is an even number ?
Answer :
S = { 1 , 2 , 3 , 4 , 5 , 6 },
n(S) = 6 .
E an even number is = { 2 , 4 , 6 } , n ( E ) = 3 .
So , P ( E ) = n ( E ) / n( S) = 3 / 6 = 1 / 2 .
প্রতিটি লেকচারে নতুন নতুন লিখা যুক্ত হচ্ছে, তাই কাঙ্খিত কোন লিখা না পেলে দয়া করে কিছুদিন পর আবার ভিজিট করে দেখবেন।
লিখাতে কিংবা লেকচারে কোন ভুলত্রুটি থাকলে অথবা আপনার কাঙ্খিত লিখা খুঁজে না পেলেইশিখন.কম এর ফ্যানপেইজ অথবা নিচে কমেন্ট কর